1891 Blogging: The tech future seen from 120 years ago

Posted on by Mike Evans

Review: Heroes of the Telegraph by John Munro (1891), iBookstore, free

Had blogs existed 120 years ago John Munro would have been up there with the best of 'em. His book, which traces electronic communications from the 50-year-old and "perfected" telegraph through to the latest modern developments, the telephone and the phonograph, is a Gutenberg gem. At the time of writing in 1891 both the telephone and phonograph had been around for little more than 10 years and Munro exhibits the sort of enthusiasm now associated with the latest technical news on Engadget or TechCrunch.

Edison and phonographThe story of the invention of the phonograph by Thomas Edison is fascinating enough, but it is Munro's conjectures on the future opened up by recordings that are much more interesting. Here is a review of possible future developments, some uncannily accurate, some wide of the mark, that make for gripping reading. 

He suggests that phonograph records could be used for correspondence, for dictation and for communication "on unsteady vehicles such as trains" where writing is difficult. He also foresees audio books and reports that Edison can fit the whole of Nicholas Nickleby on four eight-inch wax cylinders of five-inch diameter. "Perhaps," he says, "we could have circulating libraries which issue phonograms, and there is already some talk of a phonographic newspaper which will prattle politics and scandal at the breakfast-table. Addresses, sermons, and political speeches may be delivered by the phonograph; languages taught, and dialects preserved; while the study of words cannot fail to benefit by its performance."

Strangely, in 1891, the concept of recording music was not mainstream: "Musicians will now be able to record their improvisations by a phonograph placed near the instrument they are playing."

This book is a delight and is a must-read for all technophiles.  It has probably been out of print for decades, yet through the Gutenberg project and Apple's iBookstore we can read it again. Much of the book is concerned with the development of the electric telegraph and, of particular interest, the trials and tribulations of undersea cable laying.

After the break is a fuller excerpt from the chapter on Edison's invention of the phonograph.

Excerpt from "Heroes of the Telegraph"

During the spring of 1877, he (Edison) was trying a device for making a telegraph message, received on one line, automatically repeat itself along another line. This he did by embossing the Morse signals on the travelling paper instead of merely inking them, and then causing the paper to pass under the point of a stylus, which, by rising and falling in the indentations, opened and closed a sending key included in the circuit of the second line. In this way the received message transmitted itself further, without the aid of a telegraphist. Edison was running the cylinder which carried the embossed paper at a high speed one day, partly, as we are told, for amusement, and partly to test the rate at which a clerk could read a message. As the speed was raised, the paper gave out a humming rhythmic sound in passing under the stylus. The separate signals of the message could no longer be distinguished by the ear, and the instrument seemed to be speaking in a language of its own, resembling 'human talk heard indistinctly.' Immediately it flashed on the inventor that if he could emboss the waves of speech upon the paper the words would be returned to him. To conceive was to execute, and it was but the work of an hour to provide a vibrating diaphragm or tympanum fitted with an indenting stylus, and adapt it to the apparatus. Paraffined paper was selected to receive the indentations, and substituted for the Morse paper on the cylinder of the machine. On speaking to the tympanum, as the cylinder was revolved, a record of the vibrations was indented on the paper, and by re-passing this under the indenting point an imperfect reproduction of the sounds was heard. Edison 'saw at once that the problem of registering human speech, so that it could be repeated by mechanical means as often as might he desired, was solved.' [T. A. Edison, North American Review, June, 1888; New York Electrical Review, 1888,]

The experiment shows that it was partly by accident, and not by reasoning on theoretical knowledge, that the phonograph was discovered. The sound resembling 'human talk heard indistinctly' seems to have suggested it to his mind. This was the germ which fell upon the soil prepared for it. Edison's thoughts had been dwelling on the telephone; he knew that a metal tympanum was capable of vibrating with all the delicacies of speech, and it occurred to him that if these vibrations could be impressed on a yielding material, as the Morse signals were embossed upon the paper, the indentations would reproduce the speech, just as the furrows of the paper reproduced the Morse signals. The tympanum vibrating in the curves of speech was instantly united in his imagination with the embossing stylus and the long and short indentations on the Morse paper; the idea of the phonograph flashed upon him. Many a one versed in acoustics would probably have been restrained by the practical difficulty of impressing the vibrations on a yielding material, and making them react upon the reproducing tympanum. But Edison, with that daring mastery over matter which is a characteristic of his mechanical genius, put it confidently to the test.

Soon after this experiment, a phonograph was constructed, in which a sheet of tinfoil was wrapped round a revolving barrel having a spiral groove cut in its surface to allow the point of the indenting stylus to sink into the yielding foil as it was thrust up and down by the vibrating tympanum. This apparatus—the first phonograph—was published to the world in 1878, and created a universal sensation. [Scientific American, March 30, 1878] It is now in the South Kensington Museum, to which it was presented by the inventor.

The phonograph was first publicly exhibited in England at a meeting of the Society of Telegraph Engineers, where its performances filled the audience with astonishment and delight. A greeting from Edison to his electrical brethren across the Atlantic had been impressed on the tinfoil, and was spoken by the machine. Needless to say, the voice of the inventor, however imperfectly reproduced, was hailed with great enthusiasm, which those who witnessed will long remember. In this machine, the barrel was fitted with a crank, and rotated by handle. A heavy flywheel was attached to give it uniformity of motion. A sheet of tinfoil formed the record, and the delivery could be heard by a roomful of people. But articulation was sacrificed at the expense of loudness. It was as though a parrot or a punchinello spoke, and sentences which were unexpected could not be understood. Clearly, if the phonograph were to become a practical instrument, it required to be much improved. Nevertheless this apparatus sufficiently demonstrated the feasibility of storing up and reproducing speech, music, and other sounds. Numbers of them were made, and exhibited to admiring audiences, by license, and never failed to elicit both amusement and applause. To show how striking were its effects, and how surprising, even to scientific men, it may be mentioned that a certain learned savant, on hearing it at a seace of the Academie des Sciences, Paris, protested that it was a fraud, a piece of trickery or ventriloquism, and would not be convinced.

After 1878 Edison became too much engaged with the development of the electric light to give much attention to the phonograph, which, however, was not entirely overlooked. His laboratory at Menlo Park, New Jersey, where the original experiments were made, was turned into a factory for making electric light machinery, and Edison removed to New York until his new laboratory at Orange, New Jersey, was completed. Of late he has occupied the latter premises, and improved the phonograph so far that it is now a serviceable instrument. In one of his 1878 patents, the use of wax to take the records in place of tinfoil is indicated, and it is chiefly to the adoption of this material that the success of the 'perfected phonograph' is due. Wax is also employed in the 'graphophone' of Mr. Tainter and Professor Bell, which is merely a phonograph under another name. Numerous experiments have been made by Edison to find the bees-wax which is best adapted to receive the record, and he has recently discovered a new material or mixture which is stated to yield better results than white wax.

The wax is moulded into the form of a tube or hollow cylinder, usually 4 1/4 inches long by 2 inches in diameter, and 1/8 inch thick. Such a size is capable of taking a thousand words on its surface along a delicate spiral trace; and by paring off one record after another can be used fifteen times. There are a hundred or more lines of the trace in the width of an inch, and they are hardly visible to the naked eye. Only with a magnifying glass can the undulations caused by the vibrating stylus be distinguished. This tube of wax is filed upon a metal barrel like a sleeve, and the barrel, which forms part of a horizontal spindle, is rotated by means of a silent electro-motor, controlled by a very sensitive governor. A motion of translation is also given to the barrel as it revolves, so that the marking stylus held over it describes a spiral path upon its surface. In front of the wax two small metal tympanums are supported, each carrying a fine needle point or stylus on its under centre. One of these is the recording diaphragm, which prints the sounds in the first place; the other is the reproducing diaphragm, which emits the sounds recorded on the wax. They are used, one at a time, as the machine is required, to take down or to render back a phonographic message.

The recording tympanum, which is about the size of a crown-piece, is fitted with a mouthpiece, and when it is desired to record a sentence the spindle is started, and you speak into the mouthpiece. The tympanum vibrates under your voice, and the stylus, partaking of its motion, digs into the yielding surface of the wax which moves beneath, and leaves a tiny furrow to mark its passage. This is the sonorous record which, on being passed under the stylus of the reproducing tympanum, will cause it to give out a faithful copy of the original speech. A flexible india-rubber tube, branching into two ear-pieces, conveys the sound emitted by the reproducing diaphragm to the ears. This trumpet is used for privacy and loudness; but it may be replaced by a conical funnel inserted by its small end over the diaphragm, which thereby utters its message aloud. It is on this plan that Edison has now constructed a phonograph which delivers its reproduction to a roomful of people. Keys and pedals are provided with which to stop the apparatus either in recording or receiving, and in the latter case to hark back and repeat a word or sentence if required. This is a convenient arrangement in using the phonograph for correspondence or dictation. Each instrument, as we have seen, can be employed for receiving as well as recording; and as all are made to one pattern, a phonogram coming from any one, in any art of the world, can be reproduced in any other instrument. A little box with double walls has been introduced for transmitting the phonograms by post. A knife or cutter is attached to the instrument for the purpose of paring off an old message, and preparing a fresh surface of the wax for the reception of a new one. This can be done in advance while the new record is being made, so that no time is lost in the operation. A small voltaic battery, placed under the machine, serves to work the electric motor, and has to be replenished from time to time. A process has also been devised for making copies of the phonograms in metal by electro-deposition, so as to produce permanent records. But even the wax phonogram may be used over and over again, hundreds of times, without diminishing the fidelity of the reproduction......"

".......Phonographs have arrived in London, and through the kindness of Mr. Edison and his English representative, Colonel G. E. Gouraud, we have had an opportunity of testing one. A number of phonograms, taken in Edison's laboratory, were sent over with the instruments, and several of them were caused to deliver in our hearing the sounds which were 'sealed in crystal silence there.'

The first was a piece which had been played on the piano, quick time, and the fidelity and loudness with which it was delivered by the hearing tube was fairly astonishing, especially when one considered the frail and hair-like trace upon the wax which had excited it. There seemed to be something magical in the effect, which issued, as it were, from the machine itself. Then followed a cornet solo, concert piece of cornet, violin, and piano, and a very beautiful duet of cornet and piano. The tones and cadences were admirably rendered, and the ear could also faintly distinguish the noises of the laboratory. Speaking was represented by a phonogram containing a dialogue between Mr. Edison and Colonel Gouraud which had been imprinted some three weeks before in America. With this we could hear the inventor addressing his old friend, and telling him to correspond entirely with the phonograph. Colonel Gouraud answers that he will be delighted to do so, and be spared the trouble of writing; while Edison rejoins that he also will be glad to escape the pains of reading the gallant colonel's letters. The sally is greeted with a laugh, which is also faithfully rendered.

One day a workman in Edison's laboratory caught up a crying child and held it over the phonograph. Here is the phonogram it made, and here in England we can listen to its wailing, for the phonograph reproduces every kind of sound, high or low, whistling, coughing, sneezing, or groaning. It gives the accent, the expression, and the modulation, so that one has to be careful how one speaks, and probably its use will help us to improve our utterance.

By speaking into the phonograph and reproducing the words, we are enabled for the first time to hear ourselves speak as others hear us; for the vibrations of the head are understood to mask the voice a little to our own ears. Moreover, by altering the speed of the barrel the voice can be altered, music can be executed in slow or quick time, however it is played, inaudible notes can be raised or lowered, as the case may be, to audibility. The phonograph will register notes as low as ten vibrations a second, whereas it is well known the lowest note audible to the human ear is sixteen vibrations a second. The instrument is equally capable of service and entertainment. It can be used as a stenograph, or shorthand-writer. A business man, for instance, can dictate his letters or instructions into it, and they can be copied out by his secretary. Callers can leave a verbal message in the phonograph instead of a note. An editor or journalist can dictate articles, which may be written out or composed by the printer, word by word, as they are spoken by the reproducer in his ears.

Correspondence can be carried on by phonograms, distant friends and lovers being able thus to hear each other's accents as though they were together, a result more conducive to harmony and good feeling than letter-writing. In matters of business and diplomacy the phonogram will teach its users to be brief, accurate, and honest in their speech; for the phonograph is a mechanical memory more faithful than the living one. Its evidence may even be taken in a court of law in place of documents, and it is conceivable that some important action might be settled by the voice of this Deus ex Machina. Will it therefore add a new terror to modern life? Shall a visitor have to be careful what he says in a neighbour's house, in case his words are stored up in some concealed phonograph, just as his appearance may be registered by a detective camera? In ordinary life—no; for the phonograph has its limitations, like every other machine, and it is not sufficiently sensitive to record a conversation unless it is spoken close at hand. But there is here a chance for the sensational novelist to hang a tale upon.

The 'interviewer' may make use of it to supply him with 'copy,' but this remains to be seen. There are practical difficulties in the way which need not be told over. Perhaps in railway trains, steamers, and other unsteady vehicles, it will be-used for communications. The telephone may yet be adapted to work in conjunction with it, so that a phonogram can be telephoned, or a telephone message recorded in the phonograph. Such a 'telephonograph' is, however, a thing of the future. Wills and other private deeds may of course be executed by phonograph. Moreover, the loud-speaking instrument which Edison is engaged upon will probably be applied to advertising and communicating purposes. The hours of the day, for example, can be called out by a clock, the starting of a train announced, and the merits of a particular commodity descanted on. All these uses are possible; but it is in a literary sense that the phonograph is more interesting. Books can now be spoken by their authors, or a good elocutionist, and published in phonograms, which will appeal to the ear of the 'reader' instead of to his eye. 'On, four cylinders 8 inches long, with a diameter of 5,' says Edison, 'I can put the whole of Nicholas Nickelby.' To the invalid, especially, this use would come as a boon; and if the instrument were a loud speaker, a circle of listeners could be entertained. How interesting it would be to have Nicholas Nickelby read to us in the voice of Dickens, or Tam O'Shanter in that of Burns! If the idea is developed, we may perhaps have circulating libraries which issue phonograms, and there is already some talk of a phonographic newspaper which will prattle politics and scandal at the breakfast-table. Addresses, sermons, and political speeches may be delivered by the phonograph; languages taught, and dialects preserved; while the study of words cannot fail to benefit by its performance.

Musicians will now be able to record their improvisations by a phonograph placed near the instrument they are playing. There need in fact be no more 'lost chords.' Lovers of music, like the inventor himself, will be able to purchase songs and pieces, sung and played by eminent performers, and reproduce them in their own homes. Music-sellers will perhaps let them out, like books, and customers can choose their piece in the shop by having it rehearsed to them.

In preserving for us the words of friends who have passed away, the sound of voices which are stilled, the phonograph assumes its most beautiful and sacred character. The Egyptians treasured in their homes the mummies of their dead. We are able to cherish the very accents of ours, and, as it were, defeat the course of time and break the silence of the grave. The voices of illustrious persons, heroes and statesmen, orators, actors, and singers, will go down to posterity and visit us in our homes. A new pleasure will be added to life. How pleasant it would be if we could listen to the cheery voice of Gordon, the playing of Liszt, or the singing of Jenny Lind!

Doubtless the rendering of the phonograph will be still further improved as time goes on; but even now it is remarkable; and the inventor must be considered to have redeemed his promises with regard to it. Notwithstanding his deafness, the development of the instrument has been a labour of love to him; and those who knew his rare inventive skill believed that he would some time achieve success. It is his favourite, his most original, and novel work. For many triumphs of mind over matter Edison has been called the 'Napoleon of Invention,' and the aptness of the title is enhanced by his personal resemblance to the great conqueror. But the phonograph is his victory of Austerlitz; and, like the printing-press of Gutenberg, it will assuredly immortalise his name.

'The phonograph,' said Edison of his favourite, 'is my baby, and I expect it to grow up a big fellow and support me in my old age.' Some people are still in doubt whether it will prove more than a curious plaything; but even now it seems to be coming into practical use in America, if not in Europe."

∞ Permalink